Sains
Malaysiana 52(8)(2023): 2407-2418
http://doi.org/10.17576/jsm-2023-5208-17
Composite of Titanium
Dioxide Nanotube and Cobalt Sulfide for Photoelectrochemical Application
(Komposit Nanotiub Titanium Dioksida dan Kobalt Sulfida untuk Aplikasi Fotoelektrokimia)
MUSTAFID
AMNA RAMBEY1, SITI NURUL FALAEIN MORIDON1, KHUZAIMAH
ARIFIN1,2,*,
LORNA JEFFERY MINGGU1 & MOHAMMAD B. KASSIM1,3
1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Research Center for Advanced Materials,
National Research and Innovation Agency (BRIN), Building 224, KST BJ Habibie, South
Tangerang 15314, Banten, Indonesia
3Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
Received: 16
January 2023/Accepted: 25 July 2023
Abstract
TiO2 nanotubes (NT)
offer several advantages over other geometries for photoelectrochemical (PEC) applications. However, their performance in PEC water-splitting
application has remained unsatisfactory due to its wide bandgap. To address
this limitation, one approach is the incorporation of other materials as
co-catalysts. Hence, in this study, a composite of TiO2 NT and
cobalt sulfide (CoxSy) was
successfully synthesized, and its potential as a photoelectrode for water molecules splitting was evaluated. The TiO2 NT was
synthesized using electrochemical anodization of Ti foil, followed by annealing at 500 °C. Subsequently, CoxSy was added to the TiO2 NT using hydrothermal method, and the
composite was further annealed at 400 °C. Characterization technique, such as
FESEM and XRD were employed to identify the morphological and phase structures,
while UV-Vis reflectance spectroscopy was used for optical analysis. The
efficiency of CoxSy deposited
on to TiO2 NT were evaluated by measuring the photocurrent
generation. Remarkably, the sample of 60_CoxSy/TiO2 NT exhibited
photocurrent as high as 0.375 mA/cm2 which is over sixfold higher than the bare TiO2 NT. The
results reported in this study were higher than those reported previously.
Keywords: Anodization; cobalt sulfide;
co-catalyst; photocurrent density; TiO2 NT
Abstrak
TiO2 nanotiub (NT) menawarkan beberapa kelebihan berbanding geometri lain untuk aplikasi fotoelektrokimia (PEC). Walau bagaimanapun, prestasinya dalam aplikasi pembelahan molekul air PEC masih tidak memuaskan disebabkan sela jalurnya yang luas. Untuk mengatasi kekurangan ini, salah satu pendekatan adalah menambah bahan lain sebagai pemangkin bersama. Oleh itu, dalam kajian ini, komposit TiO2 NT dan kobalt sulfida (CoxSy) telah berjaya sintesis dan keupayaannya sebagai fotoelektrod untuk pembelahan molekul air dinilai. TiO2 NT disintesis menggunakan kaedah anodisasi foil Ti, diikuti penyepuhlindapkan pada 500 °C. Seterusnya, CoxSy ditambah kepada TiO2 NT menggunakan kaedah hidroterma, diikuti dengan penyepuhlindapan pada 400 °C. Teknik pencirian, seperti FESEM dan XRD digunakan untuk mengenal pasti struktur morfologi dan fasa, manakala spektroskopi pemantulan UV-Vis digunakan untuk analisis optik. Kecekapan pemendapanCoxSy ke atas TiO2 NT dinilai dengan mengukur penjanaan fotoarus. Sampel 60_ CoxSy/TiO2 NT mengeluarkan fotoarus setinggi 0.375
mA/cm2 yang lebih enam kali ganda lebih tinggi daripada TiO2 NT tulen. Hail kajian ini dilaporkan Keputusan yang dilaporkan lebih tinggi daripada yang dilaporkan sebelum ini.
Kata kunci: Anodisasi; ketumpatan arus foto; kobalt sulfida; pemangkin bersama; TiO2 NT
REFERENCES
Agustina,
M., Moridon, S.N.F., Linggawati, A., Arifin, K., Minggu, L.J. & Kassim,
M.B. 2022. Hydrogen production from water splitting using TiO2/CoS
composite photocatalyst. Sains Malaysiana 51(10): 3251-3259.
Arifin, K., Daud, W.R.W. & Kassim, M.B. 2013.
Optical and photoelectrochemical properties of a TiO2 thin film doped with a
ruthenium–tungsten bimetallic complex. Ceramics
International 39(3):
2699-2707.
Bagal, I.V., Arunachalam, M.,
Abdullah, A., Waseem, A., Kulkarni, M.A., Kang, S.H. & Ryu, S-W. 2022.
Toward stable photoelectrochemical water splitting using NiOOH coated
hierarchical nitrogen-doped ZnO-Si nanowires photoanodes. Journal of Energy
Chemistry 71: 45-55.
Brey, J., Muñoz, D., Mesa, V. & Guerrero, T. 2017. Use of fuel cells and
electrolyzers in space applications: From energy storage to
propulsion/deorbitation. E3S Web of Conferences 16: 17004. DOI:
10.1051/e3sconf/20171617004
Chowdhury 2012
Diby, N.D., Duan, Y., Grah, P.A., Cai, F. & Yuan,
Z. 2019. Enhanced photoelectrochemical water-splitting performance of TiO2 nanorods sensitized with CdS via hydrothermal approach. Journal of Alloys and Compounds 803: 456-465.
Etacheri, V., Di Valentin, C., Schneider, J.,
Bahnemann, D. & Pillai, S.C. 2015. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 25: 1-29.
Indira, K., Mudali, U.K., Nishimura, T. &
Rajendran, N. 2015. A review on TiO2 nanotubes: Influence of
anodization parameters, formation mechanism, properties, corrosion behavior,
and biomedical applications. Journal of
Bio- and Tribo-Corrosion 1(4):
28.
IRENA. 2019. Hydrogen: A Renewable Energy
Perspective. International Renewable Energy Agency, Abu Dhabi.
Liu, R., Sun, Z., Song, X., Zhang, Y., Xu, L. &
Xi, L. 2017. Toward non-precious nanocomposite photocatalyst: An efficient
ternary photoanode TiO2 nanotube/Co9S8/polyoxometalate
for photoelectrochemical water splitting. Applied
Catalysis A: General 544:
137-144.
Moridon, S.N.F., Arifin, K., Yunus, R.M., Minggu, L.J.
& Kassim, M.B. 2022. Photocatalytic water splitting performance of TiO2 sensitized by metal chalcogenides: A review. Ceramics International 48(5):
5892-5907.
Moridon, S.N.F., Salehmin, M.I., Mohamed, M.A.,
Arifin, K., Minggu, L.J. & Kassim, M.B. 2019. Cobalt oxide as photocatalyst
for water splitting: Temperature-dependent phase structures. International Journal of Hydrogen Energy 44(47): 25495-25504.
Ng, K.H., Minggu, L.J., Mark-Lee, W.F., Arifin, K.,
Jumali, M.H.H. & Kassim, M.B. 2018. A new method for the fabrication of a
bilayer WO3/Fe2O3 photoelectrode for enhanced
photoelectrochemical performance. Materials
Research Bulletin 98: 47-52.
Ozkan, S., Nguyen, N.T., Mazare, A. & Schmuki, P.
2018. Optimized spacing between TiO2 nanotubes for enhanced light
harvesting and charge transfer. ChemElectroChem 5(21): 3183-3190.
Rambey, M.A., Arifin, K., Minggu, L.J. & Kassim,
M.B. 2020. Cobalt sulfide as photoelectrode of photoelectrochemical hydrogen
generation from water. Sains Malaysiana 49(12): 3117-3123.
Salehmin, M.N.I., Minggu, L.J., Mark-Lee, W.F.,
Mohamed, M.A., Arifin, K., Jumali, M.H.H. & Kassim, M.B. 2018. Highly
photoactive Cu2O nanowire film prepared with modified scalable
synthesis method for enhanced photoelectrochemical performance. Solar Energy Materials and Solar Cells 182: 237-245.
Xu, Q., Jiang, D., Wang, T., Meng, S. & Chen, M.
2016. Ag nanoparticle-decorated CoS nanosheet nanocomposites: A
high-performance material for multifunctional applications in photocatalysis
and supercapacitors. RSC Advances 6(60): 55039-55045.
Yu, Z., Meng, J., Xiao, J., Li, Y. & Li, Y. 2014.
Cobalt sulfide quantum dots modified TiO2 nanoparticles for
efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy 39(28): 15387-15393.
Zhang, H., Zhang, D., Qin, X. & Cheng, C. 2015.
Three-dimensional CdS-Sensitized sea urchin like TiO2-ordered arrays
as efficient photoelectrochemical anodes. The
Journal of Physical Chemistry C 119(50):
27875-27881.
*Corresponding author; email: khuzaim@ukm.edu.my
|